skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thomas, Alec G. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract By taking the spin and polarization of the electrons, positrons and photons into account in the strong-field QED processes of nonlinear Compton emission and pair production, we find that the growth rate of QED cascades in ultra-intense laser fields can be substantially reduced. While this means that fewer particles are produced, we also found them to be highly polarized. We further find that the high-energy tail of the particle spectra is polarized opposite to that expected from Sokolov–Ternov theory, which cannot be explained by just taking into account spin-asymmetries in the pair production process, but results significantly from ‘spin-straggling’. We employ a kinetic equation approach for the electron, positron and photon distributions, each of them spin/polarization-resolved, with the QED effects of photon emission and pair production modelled by a spin/polarization dependent Boltzmann-type collision operator. For photon-seeded cascades, depending on the photon polarization, we find an excess or a shortage of particle production in the early stages of cascade development, which provides a path towards a controlled experiment. Throughout this paper we focus on rotating electric field configuration, which represent an idealized model and allows for a straightforward interpretation of the observed effects. 
    more » « less
  2. Abstract Plasma-based accelerators use the strong electromagnetic fields that can be supported by plasmas to accelerate charged particles to high energies. Accelerating field structures in plasma can be generated by powerful laser pulses or charged particle beams. This research field has recently transitioned from involving a few small-scale efforts to the development of national and international networks of scientists supported by substantial investment in large-scale research infrastructure. In this New Journal of Physics 2020 Plasma Accelerator Roadmap, perspectives from experts in this field provide a summary overview of the field and insights into the research needs and developments for an international audience of scientists, including graduate students and researchers entering the field. 
    more » « less